Правдивая теория старения! без заблуждений

Эндогенное дыхание в лечении различных заболеваний. Вопросы и ответы по конкретным заболеваниям.

Модератор: Евгений Вериго

Правдивая теория старения! без заблуждений

Сообщение Серый » Пн дек 03, 2007 20:52

Всем доброго здоровья!
Как часто приходится читать по настоящему стоящие книги? Книг написано вагон с тележкой, а толку! Когда не находят научного объяснения то начинают подтасовывать факты. Совсем другое дело, когда научные материалы, положенные в основу книги, разрабатывались автором более тридцати лет. И автором книги является доктор медицинских наук, профессор. И написана книга научно-популярным языком. Советую всем найти эту книгу и прочитать, не пожалеете.

В.М. Дильман. Большие биологические часы (введение в интегральную медицину)

Глава 1. Из истории геронтологии
Глава 2. Загадки живой природы
Глава 3. Иерархия управления в организме: роль гипоталамуса
Глава 4. Закон отклонения гомеостаза
Глава 5. Внешняя среда и болезни старения
Глава 6. Нормальная болезнь адаптационного гомеостата - гиперадаптоз
Глава 7. Нормальная болезнь репродуктивной системы - климакс
Глава 8. Возрастные изменения в регуляции аппетита
Глава 9. Нормальная болезнь энергетического гомеостата - ожирение
Глава 10. Ожирение: болезнь болезней
Глава 11. Атеросклероз и метаболическая иммунодепрессия
Глава 12. Канкрофилия и рак
Глава 13. Самая универсальная болезнь - старение: роль внутренних и внешних факторов
Глава 14. Что есть норма или Большие биологические часы
Глава 15. Возрастная норма и акселерация развития
Глава 16. Она и он: четыре и три стадии жизни
Глава 17. Лечить или не лечить? Как замедлить скорость старения
Глава 18. Введение в интегральную медицину (Вместо заключения)


Читал книгу не один раз, не сразу разобрался. Почему живые организмы умирают?
- Просто повышается порог чувствительности гипоталамуса к тормозящему действию периферических сигналов. Нарушается постоянство внутренней среды (гомеостаз). Вот почему живые организмы стареют и умирают. - А почему повышается порог чувствительности гипоталамуса?
- Просто уменьшается производство нейромедиаторов - катехоламинов: Дофамин – Норадреналин - Адреналин.
Стало быть, от мощности симпатико-адреналовой системы зависит качество и продолжительность жизни.

Две главы из этой книги.

Глава 4. Закон отклонения гомеостаза
Организм может существовать, если состав его внутренней среды поддерживается в определенных, довольно узких пределах. Это положение - сущность закона постоянства внутренней среды. Действительно, в норме величина артериального давления, концентрация в крови сахара, жира, холестерина и другие показатели колеблются весьма незначительно. Напротив, любое стойкое отклонение от нормальных пределов говорит о болезни: стойкое повышение артериального давления рассматривается как гипертония, сахара в крови - как сахарный диабет, холестерина и жира (триглицеридов) - как фактор риска атеросклероза. А коль скоро постоянство внутренней среды, или гомеостаз, должно столь строго охраняться, то необходимы и специальные механизмы его поддержания.
У одноклеточных организмов уже в силу недостаточной сложности их строения такие механизмы не могут быть совершенными. Поэтому-то смерть от внешних причин встала непреодолимым препятствием на пути к теоретической вечной жизни одноклеточных.
В процессе эволюционного превращения одноклеточных организмов в многоклеточные в конце концов развились механизмы, обеспечивающие поддержание постоянства внутренней среды путем специализации органов тела с их специализированными функциями
Вместе с тем это привело к непримиримому противоречию между потребностями развития и необходимостью стабильности, противоречию, породившему, с моей точки зрения, в процессе эволюции регуляторный тип смерти от внутренних причин.
Действительно, в каждый данный момент развития и роста многоклеточного организма должен соблюдаться закон постоянства внутренней среды, охраняемый системами гомеостаза. В то же время совершенно очевидно, что сами гомеостатические системы должны увеличивать свою мощность по мере развития, для того чтобы их деятельность могла обеспечивать потребности роста организма. Иными словами, развитие и рост организма были бы неосуществимы, если бы одновременно не увеличивалась и мощность гомеостатических систем. В определенном отношении увеличение мощности гомеостатических систем и есть развитие. Таким образом, получается, что если жизнь возможна только при соблюдении стабильности внутренней среды, то развитие и рост не могут осуществляться без нарушения закона стабильности.
Это положение можно выразить также следующим образом: у высших организмов необходимо совместить одновременно и в одном покой и движение - покой внутренней среды, обеспечивающий устойчивость организма, и движение, дающее развитие.
Можно предположить, что такое совмещение полностью противоположных требований осуществляется за счет саморазвития гомеостатических систем. Иначе говоря, системы, обеспечивающие стабильность, то есть защиту от внешнего мира, все время должны сами развиваться, увеличивая свою мощность; только в этом случае может быть обеспечено сохранение регуляции в движущейся системе.
Наиболее наглядно это можно проследить на основе тех изменений, которые наблюдаются в женском организме во время беременности. Эти изменения особенно явны во второй половине беременности, когда быстро увеличивается масса плода. В этот период у женщины происходит накопление жира, а нередко можно заметить также увеличение размеров носа или подбородка за счет набухания мягких тканей лица. Параллельно в крови повышается концентрация сахара и холестерина. Уровень сахара иногда становится столь значительным, что врачи определяют такое состояние как "диабет беременных". Иными словами, у женщины во время беременности происходит нарушение закона постоянства внутренней среды и как бы развиваются определенные болезни.
Справедлив вопрос: разве может столь жизненно необходимое явление, как беременность, сопровождаться болезнями, особенно если принимать во внимание, что в процессе эволюции вредные свойства давно были бы устранены естественным отбором? Рассмотрим это подробнее. Изменения, возникшие у беременной женщины, свойственны не только роду человеческому, они, например, так же отчетливо наблюдаются и у животных. Более того, можно заметить, что признаки "болезни, беременного организма" напоминают именно те отклонения, которые остро возникают у горбуши в период, предшествующий нересту, хотя у рыб в отличие от млекопитающих плод не развивается в материнском организме.
Приняв все это во внимание, приходится признать: отклонение от закона постоянства внутренней среды - это та запрограммированная "болезнь беременного организма", без которой невозможно развитие плода. Ведь чтобы нормально развиваться, плод должен быть обеспечен "строительным материалом" - он и доставляется в результате -описанных сдвигов. И материала этого требуется много, поскольку за относительно короткий срок из одной оплодотворенной клетки воспроизводятся миллиарды клеток вновь сформированного организма. Надо полагать, это происходит по такой примерно схеме.
Обязательная часть каждой клетки - холестерин. Он входит в каркас оболочки клетки - клеточную мембрану. Большинство видов клеток не может самостоятельно синтезировать столько холестерина, сколько нужно для построения оболочки, и эти клетки получают холестерин из печени. Мощность же печени плода еще мала, она не обеспечивает потребностей быстро увеличивающейся клеточной массы. Значит, холестерин должен поступать из материнского организма. Но и этот источник холестеринового сырья весьма ограничен. Ведь выполнение закона постоянства внутренней среды в том и состоит, что организм защищен как от недостатка, так и избытка чего-либо. Вот почему для обеспечения холестерином потребностей развития плода закон постоянства должен быть нарушен.
Существенной особенностью этого нарушения является то, что механизм, изменяющий гомеостаз, располагается во временно существующем органе - плаценте. Поэтому изменения гомеостаза, свойственные периоду беременности, являются временными - плацента вместе с родами заканчивает свое существование.
В период беременности плацента вырабатывает ряд гормонов, и в частности плацентарный гормон роста, который уменьшает сгорание глюкозы в материнском организме. Но если глюкоза, поступающая с пищей, полностью не используется как топливо, то она превращается в жир - развивается ожирение. В организме имеются два источника энергии - глюкоза и жирные кислоты. Эти виды топлива в здоровом организме используются поочередно. Например, ночью, когда пища не поступает, основное топливо - жирные кислоты. Более того, в мышечной ткани углеводы не сгорают полностью в пламени жиров. В крови образуется запас глюкозы, служащий обеспечению энергией нервной системы. Когда количество жира в организме возрастает, как это имеет место при беременности, то из жировых депо начинают как бы просачиваться в кровь жирные кислоты. Поэтому при увеличении концентрации жирных кислот, которые тормозят использование тканями глюкозы, концентрация глюкозы в крови после еды еще более увеличивается. Возникает явление, которое свойственно сахарному диабету. Снижение энергетического использования глюкозы сопровождается увеличением использования альтернативного вида топлива - жирных кислот, их концентрация в крови увеличивается. Но жирные кислоты почти не проходят к плоду через плацентарный барьер. Поэтому в материнском организме из продуктов сгорания жирных кислот в повышенном количестве образуется холестерин - именно тот структурный компонент, который необходим для "сборки" оболочек клеток и для производства плодом ряда гормонов.
Вот чему служит диабет беременных, являющийся результатом "запланированного" нарушения постоянства внутренней среды в материнском организме, то есть "запланированной" болезнью.
Таким образом, в период беременности отклонение гомеостаза достигается за счет дополнительной эндокринной железы - плаценты, которая к тому же, не являясь постоянной частью нейроэндокринной системы, не включена в систему саморегуляции, ограничивающей активность любой другой эндокринной железы кибернетическим механизмом отрицательной обратной связи. Поэтому продукция плацентарных гормонов увеличивается практически до конца беременности параллельно увеличению размеров плаценты.
Но если отклонение гомеостаза действительно всегда является необходимым условием развития и роста организма, то каким образом обеспечивается такое отклонение после родов в процессе развития и роста ребенка, а затем и взрослого человека?
В ранние периоды жизни здоровые дети обычно производят впечатление "толстячков". Многие скульптуры древних ваятелей и картины художников увековечили эту особенность: дети в их изображении обладают приятной полнотой. Это и есть проявление все того же положения: для развития необходима дополнительная энергия, которая черпается из жира. В данном случае приятная упитанность ребенка как раз и отражает нарушение закона постоянства внутренней среды. И это не специальная особенность детей человеческих. Вот характерное описание, относящееся к периоду детства у волков.
"За последние недели волчата подросли и теперь размерами, да, пожалуй, и формой, напоминали взрослых сурков. Они так растолстели, что по сравнению с туловищем их лапы казались просто карликовыми, а пушистые серые шубки только - усугубляли полноту. Ничто, казалось, не предвещало, что со временем они превратятся в таких же стройных и мощных зверей, как и их родители" (Моуэт Ф. "Не кричи, волки" М., 1968), Да иначе и быть не может. Рост (и плода, и ребенка) связан с появлением новых клеток, а для них нужен, в частности, дополнительный холестерин, который, в свою очередь, синтезируется, когда увеличивается использование жира.
Но каким же образом обеспечивается усиление мощности гомеостатической системы, охраняемой законом постоянства внутренней среды?
Изучение этого вопроса приводит к выводу, что закон отклонения гомеостаза распространяется не на все регулируемые функции живого организма, а лишь на три из них. Но эти три функции контролируют три основных свойства живого организма.
Свойством, отличающим живую систему от неживой, является способность живой системы к размножению, приспособлению (адаптации) и регулированию потока энергии (или обмен веществ). Обмен веществ, обеспечивающий поддержание энергетических процессов, - это главное из трех основных свойств живой системы. В конечном итоге живая система - это энергетическая машина, потребляющая топливо - пищу для поддержания своей структуры и деятельности.
В то же время деятельность живой системы в значительной степени подчинена требованиям адаптации - приспособлению к меняющимся условиям внешней и внутренней среды организма. Чем выше способность к адаптации, тем выше жизнеспособность системы. Естественно, что в основе адаптации также лежат энергетические процессы.
Наконец, способность к размножению - это то свойство живой системы, которое обеспечивает сохранение вида. Процесс размножения также поддерживается деятельностью энергетической системы. Крайний вариант такой поддержки демонстрирует пример, относящийся к механизму естественной гибели горбуши.
Три основных свойства живого находятся в тесном взаимодействии. Но их объединяет еще требование, предъявляемое им развитием организма. Увеличение размеров тела, усиление защитных функций и созревание способности к размножению достаточно наглядно характеризуют увеличение мощности энергетической, адаптационной и половой (репродуктивной) систем по мере развития организма.
Три свойства живого нуждаются в структурной организации, то есть наличии определенного механизма, который позволял бы им проявляться в организме. Соответственно в каждом сложном организме существуют энергетическая, адаптационная и репродуктивная системы, которые можно обозначить как энергетический, адаптационный и репродуктивный гомеостат.
Термин "гомеостат" не только по звучанию, но в известной мере и по содержанию близок к слову "термостат". И не случайно. Подобно тому как это имеет место в термостате, предназначенном для поддержания определенной температуры, в энергетическом, адаптационном и репродуктивном гомеостате существует также механизм, которым регулируется соответствующее свойство, или функция. Но регулирование это особое.
Если деятельность классических кибернетических систем обычно направлена на поддержание постоянства в контролируемой системе, как это, например, имеет место в термостате, то в энергетическом, адаптационном и репродуктивном гомеостате происходит саморазвитие, увеличивающее мощность этих систем в соответствии с потребностями развития организма. Поэтому саморазвивающиеся гомеостатические системы правильнее было бы назвать динамо-кибернетическими.
Чтобы сохранить, например, стабильность температуры в той или иной системе, чувствительность регулятора к изменению температуры должна сохраняться постоянной. В термостате как только температура достигнет своего заданного предела, происходит необходимое воздействие на регулятор, что приводит к выключению системы нагревания.
Но представим себе, что чувствительность регулятора к температуре с течением времени будет постепенно снижаться. Это неизбежно приведет к нагреванию термостата до более высокой температуры, пока не произойдет необходимого воздействия на регулятор, выключающий тепловой элемент. Если понижение чувствительности регулятора пусть медленно, но неуклонно продолжится, то термостат будет все больше и больше разогреваться. Иными словами, количество тепла, производимое термостатом, или его мощность, будет возрастать.
Итак, отличие в принципе регуляции между классическими кибернетическими системами и динамо-кибернетическими и заключается в том, что в последних чувствительность регулятора изменяется. Это при сохранении механизма кибернетической регуляции приводит, однако, в конечном итоге к нарушению стабильности, то есть к отклонению гомеостаза.
Такая ситуация изменения "точки отсчета" чувствительности гипоталамуса, контролирующего три основные истины гомеостаза, действительно имеет место. Особенно четко это прослеживается в механизме возрастного включения репродуктивной функции. Пример тем более убедителен, что, с одной стороны, половое созревание должно быть каким-то образом задержано до той поры, пока закончится развитие и рост тела, а с другой - само половое созревание обладает наглядными чертами, характеризующими повышение мощности репродуктивной системы.
Если вспомнить общий принцип работы саморегулирующихся гомеостатических систем, легко понять, что половое созревание не может быть обусловлено первичным усилением мощности рабочей эндокринной железы - половой железы. Иначе увеличение продукции половых гормонов полностью тормозило бы деятельность регулятора-гипоталамуса в соответствии с механизмом отрицательной обратной связи. Это устраняло бы саму возможность и регулирования и развития. Следовательно, механизм полового созревания должен быть связан с изменениями состояния самого регулятора, то есть гипоталамуса. Так оно и есть.
В ряде исследований было показано, что порог чувствительности гипоталамуса изменяется в течение всей жизни. Вскоре после рождения гипоталамус обладает максимальной чувствительностью к тормозящему действию половых гормонов. Поэтому половой центр гипоталамуса в этот период заторможен тем небольшим количеством половых гормонов, которые уже вырабатываются незрелым организмом. Это и предотвращает преждевременное половое созревание, его темпы соизмеряются с общим развитием тела.
Суть механизма возрастного включения репродуктивной функции состоит в повышении порога чувствительности гипоталамуса к тормозящему действию половых гормонов. Благодаря этому повышению гипоталамус постепенно освобождается от торможения, осуществляемого половыми гормонами по механизму отрицательной обратной связи. В результате постепенно увеличивается активность гипоталамуса, а затем и гипофиза, который, в свою очередь, своими гормонами стимулирует половые железы. Однако повышение в крови концентрации половых гормонов не ведет в этой ситуации к снижению активности гипоталамуса: благодаря все продолжающемуся повышению порога чувствительности гипоталамус вновь и вновь освобождается от тормозящего влияния половых гормонов. Так увеличивается мощность репродуктивной системы и вместе с тем сохраняется механизм саморегуляции, свойственный гомеостатической системе.
Таким образом, наряду с механизмом, который направлен на поддержание равновесия и постоянства (гомеостаза) в каждый данный момент, существует механизм, который обеспечивает нарушение гомеостаза во времени и тем самым осуществляет выполнение программы раз вития организма. И если стабильность внутренней среды организма - закон существования организма, то запрограммированное нарушение гомеостаза - закон развития организма. Поэтому с законом постоянства внутренней среды сосуществует закон отклонения гомеостаза.
Скептический читатель может, однако, задать вопрос: что же, собственно, нового в этом законе? Ведь и без этого ясно, что в силу самого наличия генетической программы развития должен существовать и конкретный механизм, обеспечивающий это развитие. Но на такой, казалось бы, простой вопрос можно дать ответ, именно основываясь на законе отклонения гомеостаза.
Если бы существовал лишь закон постоянства внутренней среды, необходимо было бы множество исключений, запрещающих действие этого закона во всех тех условиях, когда осуществляется развитие организма, ибо развитие, как мы только что выяснили, всегда связано с нарушением равновесия и стабильности. Иными словами, закон постоянства внутренней среды без своего антипода - закона отклонения гомеостаза - должен был бы запрещать развитие. Следовательно, фундаментальный закон постоянства внутренней среды может существовать только в диалектическом единстве со своей противоположностью - законом отклонения гомеостаза.
Но и это еще не все. Для того чтобы оба противоположных закона могли сосуществовать, обеспечивая, с одной стороны, стабильность в каждый данный момент, а с другой - развитие во времени, необходимо, чтобы оба закона выполнялись по аналогичным правилам (механизмам). Это условие может быть удовлетворено только на объединяющем, интегральном уровне гипоталамуса, в котором сходятся пути трех главных гомеостатических систем. Другого подобного места в организме нет.
В отношении того, как технически совмещены эти две противоположные функции, можно предположить следующее. Хотя деятельность всего гипоталамуса направлена на выполнение закона постоянства внутренней среды, та часть этой деятельности, которая одновременно служит противоположному закону - закону отклонения гомеостаза, как бы выделена особо, образуя гипоталамо-гипофизарный комплекс. Мы уже говорили, что три основных свойства живого организма - способность регулировать поток энергии, адаптацию и размножение - обязательно должны усиливаться при осуществлении развития и роста организма. Таким образом, выполняется закон отклонения гомеостаза. Но такое увеличение мощности вряд ли осуществимо только в результате изменений в самом гипоталамусе. Гипоталамус построен из нервных клеток, которые утрачивают способность к делению в зрелом организме.
Другое дело - передняя доля гипофиза, входящая в гипоталамо-гипофизарный комплекс. Эта часть гипофиза построена из железистой ткани, для которой характерна способность увеличивать как рабочий объем каждой своей клетки, так и число клеток. Поэтому мощность системы легко может возрастать (за счет деятельности гипофиза) и вместе с тем в ней может сохраняться способность к точному регулированию в соответствии с сигналами, исходящими из нервных клеток гипоталамуса. В силу этого гипоталамо-гипофизарный комплекс является "материальной базой" особого типа регулирования, свойственного динамо-кибернетическим системам энергетического, адаптационного и репродуктивного гомеостата.
Но ведь самой гипоталамно-гипофизарной структуры недостаточно, чтобы обеспечить увеличение мощности этих трех гомеостатов. Ясно, что был необходим необычный способ изменения регуляции, при котором кибернетический принцип, свойственный всем системам управления, трансформировался бы в динамо-кибернетический, соответствующий закону отклонения гомеостаза.
Данный принцип и лежит в основе развития организма (как мы это видели на примере обеспечения механизма полового созревания). Таким образом, в гипоталамусе реализуются одновременно и закон постоянства внутренней среды, и закон отклонения гомеостаза.
Но есть еще одно свойство гипоталамуса (как части нервной системы), которое обеспечивает выполнение закона отклонения гомеостаза.
Каждая нервная клетка является миниатюрной эндокринной железой: она производит вещества, которые в принципе ничем не отличаются от типичных гормонов. Применительно к нервной системе эти вещества обозначаются как посредники, или передатчики - нейромедиаторы.
Дело в том, что нервные клетки, строго говоря, не образуют непрерывную сеть, по которой двигался бы электрический импульс-сигнал. От тела каждой нервной клетки отходят провода-отростки, расположенные близко к мембране соседней нервной клетки. В пространство, или щель (синаптическую щель), между нервными клетками из отростка выделяются вещества-посредники, которые, подобно гормонам, действуют на рецепторы мембраны соседней нервной клетки, стимулируя или, наоборот, тормозя ее деятельность. А каждая гипоталамическая клетка, кроме того, имеет на своей мембране рецепторы-антенны для прикрепления рабочих гормонов эндокринных желез. Эти гормоны действуют на гипоталамус по механизму обратной связи, стимулируя или тормозя деятельность гипоталамических клеток.
Каждая из трех основных гомеостатических систем имеет в гипоталамусе свои представительства - ядра, или центры, а то и ряд взаимосвязанных центров. В клетках этих центров производятся специальные гипоталамические гормоны, которые контролируют продукцию каждого гормона передней доли гипофиза. В свою очередь, на нервные клетки, образующие эти центры, оказывают действие, как гипофизарные гормоны, так и гормоны периферических эндокринных желез, то есть рабочие гормоны.
Строение гипоталамуса обеспечивает широкие возможности для изменения порога чувствительности этого регулятора. Действительно, наиболее простым способом изменения порога чувствительности к действию рабочих гормонов является изменение числа антенн-рецепторов на мембране клеток соответствующего гипоталамического центра, например "полового центра" репродуктивной системы. Если рецепторов станет меньше, то меньшее число молекул рабочего гормона будет взаимодействовать с мембраной нервной клетки, и соответственно чувствительность гипоталамического регулятора снизится*. Такое явление наблюдается при нормальном старении,
Но если бы с возрастом просто происходило уменьшение числа антенн-рецепторов, то это явление, по существу, было бы необратимым: в нем выражалось бы
В такой менее стимулированной и более инертной клетке замедляются процессы обмена вещества и, в частности, уменьшается производство белковых антенн-рецепторов на мембране.
Нам могут возразить, что такой двухступенчатый процесс, при котором вначале снижается количество медиаторов, а затем вследствие этого происходит снижение числа антенн-рецепторов, ничего принципиально не меняет. Остается неясным не только то, почему снижается число рецепторов, но и возникает новый вопрос: почему снижается концентрация медиаторов?
В настоящее время это можно объяснить только одним: такое снижение "запланировано" генетически, поскольку, например, именно снижение концентрации медиаторов в гипоталамусе приводит к возрастному выключению детородной функции в женском организме, или климаксу - закономерному проявлению старения. Таким образом, сопряжение обоих законов на гипоталамическом уровне и сам принцип, которым выполняются оба этих закона, порождают следствие, имеющее решающее значение в биологической жизни каждого индивидуума. Этим следствием является регуляторный механизм старения, болезней старения и естественной смерти.
Когда завершается выполнение программы развития организма, закон отклонения гомеостаза не прекращает своего существования, а, напротив, продолжает выполняться с той же последовательностью, что и раньше. Поэтому если отклонение гомеостаза вначале служит развитию и росту, то затем оно превращается лишь в силу, нарушающую закон постоянства внутренней среды: после завершения роста развитие как бы продолжается и в результате постепенно начинают формироваться черты, свойственные нормальному старению и болезням старения. Действительно, в процессе старения нарушается гомеостаз: увеличивается в крови уровень сахара, холестерина и т. д. Следовательно, само нормальное старение есть болезнь, вернее, сумма болезней гомеостаза - болезней, вызванных нарушением закона постоянства внутренней среды организма. Такие же изменения, хотя в значительно более быстром темпе, происходят и у горбуши в период нереста.
Пример гибели горбуши является с этой точки зрения частным примером гибели вследствие нарушений в системе саморегуляции. Частное значение этого примера определяется тем, что изменение системы саморегуляции, создающее в конечном итоге повышенную выработку холестерина, вызывается сигналами, идущими от половых желез, то есть механизм смерти остро включается в соответствии с потребностями программы размножения. Но и включение половой функции осуществляется за счет усиления работы системы саморегуляции, что, с одной стороны, обеспечивает потребности размножения, а с другой - становится орудием, вызывающим гибель организма от внутренней причины. Таким образом, смерть от внутренних причин, присущая высокоорганизованным живым системам, - это результат взаимодействия между механизмами развития и стабилизации, или гомеостаза.
Обращаю внимание читателя вот еще на что. Увеличение мощности главных гомеостатов в процессе старения означает, что старение и связанные с ним болезни формируются не за счет снижения, угасания, а, напротив, усиления, перенапряжения деятельности систем, регулирующих энергетические процессы, адаптацию и размножение. Это очень важное положение внешне выглядит прямо-таки неправдоподобным: ведь все мы знаем, что работоспособность, сила, выносливость организма с возрастом снижаются. Но все это - результат старения. Мы же с вами сейчас говорим о его процессе. Жизнь в процессе старения как бы идет вразнос, подобно тому как рано или поздно нечто подобное произойдет с термостатом, если его регулятор из-за снижения чувствительности будет все менее и менее сдерживать повышение температуры в системе.
Например, известно, что сердце с годами слабеет. Но этому результату - ослаблению - предшествует увеличение его размеров, то есть усиление его мощности. Чело век, старея, как бы движется по лестнице, ведущей вверх...
В свете представлений о законе отклонения гомеостаза становится более ясным, почему все происходит именно так, а не иначе. Признаки естественного старения определяются теми изменениями, которые ранее должны быть выполнены для осуществления развития организма. Более того, закон постоянства внутренней среды ограничивает сферу применения закона отклонения гомеостаза тремя главными гомеостатическими системами.
Иными словами, все те физиологические характеристики организма, которые охраняются законом постоянства внутренней среды, не служат для построения закономерных возрастных болезней, не лежат в основе возникновения регуляторного типа болезней, хотя именно эти болезни в конечном счете и приводят к смерти от внутренних причин; то есть у высших организмов естественная смерть - смерть регуляторная.
Исследования, суммированные в табл. на стр. 49, показывают, что причины, лежащие в основе гибели таких, например, далеких друг от друга видов, как горбуша, крыса и человек, практически совпадают. Если бы речь шла не о механизме смерти, то следовало бы сказать, что этот механизм - чудо совершенства.
Сегодня можно утверждать, что биологические часы, определяющие длительность жизни высших организмов, заключены не в каждой отдельной клетке, а в системе регуляции. Поэтому точнее эти часы было бы назвать Большими биологическими часами. Вот почему, быть может, нет никакой особой фатальности в явлении естественной смерти, а есть проблемы познания механизма развития организма, и в первую очередь - углубленного изучения его регуляторных принципов.
В самом деле, как бы ни были сложны эти принципы, они доступны изучению и контролю. Уже то обстоятельство, что они действуют всегда закономерно, позволяет их изучать лучше, чем изменения, связанные с действием случайных факторов, например "поломок" (мутаций) в громадной машине человеческого тела. Именно наличие перехода программы развития организма в механизм болезней старения - неисчерпаемый источник оптимизма в поиске путей и средств противодействия этим болезням.
С теми из читателей, кто, не устрашась трудностей, без которых было невозможно обойтись в этой главе, добрался до ее конца, подведем итоги.
Итак, развитие от одноклеточного организма до многоклеточных специализированных организмов есть не просто количественный переход от одной клетки к множеству клеток. Это качественно новый переход от жизни "одного" к жизни системы. В этом процессе произошло подчинение жизни многоклеточного организма, наделенного стабилизирующими гомеостатическими системами, как общим законам работы любых других систем управления, так и специальным требованиям, определяемым законом отклонения гомеостаза.
Появление в процессе эволюции высших организмов с их саморазвивающимися гомеостатическими системами ограничило влияние факторов, вызывающих смерть от внешних причин. Это сделало возможным совершенствование форм жизни. Но одновременно реализация закона отклонения гомеостаза в конечном итоге приводит к болезням, не совместимым с неограниченным продолжением жизни отдельного индивидуума. В результате доминирующее значение приобрела смерть от внутренних причин.
Без вмешательства в эти биологические закономерности не могут быть полностью устранены основные болезни высших организмов, ибо эти болезни - тяжелая, но вполне приемлемая плата за достигнутое в процессе эволюции совершенство. В это диалектически противоречивое влияние законов стабильности и отклонения гомеостаза должен вмешаться homo sapiens - Человек разумный, не только высший продукт живой природы, но и ее Инструмент, который теперь на новом этапе ускоряет, изменяет и совершенствует эволюцию живой Природы, а следовательно, и самого себя.
Как неоднократно подчеркивалось в предыдущих главах, выполнение закона отклонения гомеостаза формирует картину старения и сцепленных с ним болезней, определяя в конечном итоге механизм смерти от внутренних причин. Но для того чтобы лучше понять, каким образом отклонение гомеостаза создает группу определенных болезней, рассмотрим в следующей главе роль внешних факторов в механизме возникновения этих болезней. Сделать это необходимо еще и вот почему.
По настоящее время многие полагают, что основные болезни человека связаны прежде всего с неблагоприятным влиянием ряда внешних факторов. Действительно, например, переедание может привести к возникновению ожирения, сахарного диабета тучных, атеросклероза. Более того, внешние факторы могут вызвать появление любой из 10 главных болезней человека. Эта зависимость определенных болезней и от строгого порядка внутренних факторов развития организма, и от многих внешних факторов, сама хаотичность которых как бы опровергает представление о порядке, установленном законом отклонения гомеостаза, не позволяла в течение многих лет увидеть то общее в нарушении гомеостаза, что обусловливает возникновение этих болезней.
Рассмотрим на примере стресса, почему определенные внешние факторы вызывают развитие болезней, обычно сцепленных со старением.

Эволюция, формируя высшие организмы, определила, что лучше иметь возможность прожить видовой лимит жизни и умереть старым и больным, чем умереть молодым и здоровым в любой момент, наступление которого могло бы определиться только факторами внешней среды. Поэтому вернее было бы сказать, что цивилизация не вызывает болезней цивилизации, а вносит принцип неопределенности в "запрограммированный" механизм болезней старения.

Глава 5. Внешняя среда и болезни старения
В организме в ответ на всякое изменение условий, требующее повышения его работоспособности, возникает серия стереотипных приспособительных реакций, направленных на обеспечение его защиты. Совокупность этих защитных реакций известный физиолог Ганс Селье определил как адаптационный (приспособительный) синдром, или стресс.
Повышение или понижение температуры окружающей среды, голод или жажда, кровопотеря или физическое усилие, инфекция или травма, эмоциональное напряжение или обездвиживание - все это вызывает ряд изменений в организме, которые объединяются в понятие "стрессорная реакция".
Организм в этих случаях как бы не интересуется деталями, то есть тем, что составляет особенность каждого из перечисленных факторов - стрессоров, а реагирует в целом на повреждающий фактор. Стрессорная реакция особенно выгодна для организма тем, что она стереотипна: организм имеет возможность сразу приступить к защите, использовав для этого одну закрепленную реакцию в ответ на все многообразие чрезвычайных раздражителей, или стрессоров. Реакция адаптации, или стресса, пожалуй, самый бдительный страж организма, ибо она всегда автоматически включается и без участия сознания, а лишь под влиянием безусловных рефлексов - боли или изменения состава внутренней среды (например, при кровотечении, при снижении уровня сахара в крови вследствие голодания и т. д.).
Искусственное нарушение системы адаптации влечет за собой самые тяжелые последствия. Так, если удалить у животного надпочечники - эндокринную железу, без которой не может быть осуществлена стрессорная реакция, то сохранить его жизнь даже в идеальных условиях ухода и питания можно, лишь постоянно вводя гормоны надпочечников. Но как только возникает стрессорная ситуация, доза этих гормонов должна быть резко увеличена, иначе животное погибнет из-за недостаточности системы защиты.
И все же организм нередко дорого платит за свою способность защищаться путем приспособления. Большая группа болезней, так называемых болезней адаптации, возникает именно в условиях стресса. Почему?
Рассмотрим классический пример встречи кошки с собакой, проанализированный с физиологической точки зрения еще Уолтером Кенноном - создателем учения о гомеостазе. Дополним этот пример описанием стрессорной реакции в духе Ганса Селье, но включим сюда некоторые дополнительные детали, выясненные многочисленными исследователями стресса в дальнейшем, после основополагающих работ Ганса Селье. Наконец, введем в описание этой картины важный элемент - повышение гипоталамического порога чувствительности, которого ни Г. Селье, ни другие исследователи стрессорной реакции не увидели. А между тем без повышения гипоталамического порога не могла бы быть осуществлена сколько-нибудь длительная стрессорная реакция. Правда, в этом случае и плата организма за адаптацию не была бы столь высокой.
Итак, собака и кошка заметили друг друга. Органы чувств уже на расстоянии дают сигнал в центральную нервную систему о том, что противник близко. Возможно, предстоит борьба, и поэтому к ней необходима подготовка. Ситуация оценивается корой головного мозга, но сама окраска оценки эмоциональна.
Именно эмоция является одним из сильнейших мобилизующих факторов. Регуляция эмоций в значительной мере сосредоточена в гипоталамусе. Когда кошка принимает свою характерную позу с выгнутой спиной, это означает, что информация, полученная из коры головного мозга, возбудила эмоции страха и агрессии в гипоталамусе. Это фаза подготовки к борьбе. Сама эмоциональная поза животного приводит тело в состояние готовности к немедленному движению.
Одновременно гипоталамус посылает сигналы к вегетативной нервной системе - тому ее отделу, который "ведает" функцией внутренних органов. Такой сигнал в доли секунды поступает в надпочечники, и они выбрасывают свой гормон - адреналин. Это легко заметить со стороны: адреналин вызывает сокращение специальных мышц кожи, и шерсть у животного становится дыбом. Выброс адреналина в кровь способствует расширению сосудов сердца, мозга и легких и, напротив, сужению сосудов кожи и внутренних органов, особенно пищеварительных, вследствие чего происходит перераспределение объема крови, выгодное для борьбы. Усиливается деятельность сердца, повышается артериальное давление.
Вся эта деятельность нуждается в обеспечении энергией, и адреналин мобилизует оба источника энергии: из жировых депо - жирные кислоты и из печени - глюкозу. Тем самым усиливается питание мышечной ткани и мозга. Все это вместе взятое - сужение сосудов кожи, вздыбленная шерсть, уменьшающая теплоотдачу, повышение в крови уровня жирных кислот и глюкозы, легкая дрожь - способствует повышению температуры тела, что создает оптимальные условия для протекания химических реакций. Это напоминает разминку спортсмена перед стартом и происходит в считанные секунды.
Наконец, адреналин резко увеличивает способность сердца усваивать кислород. (Заметим в скобках, что у человека эта защитная мера может стать крайне опасной. Так, слишком интенсивное поглощение кислорода из крови сердцем при отрицательных эмоциях временно может создать кислородное голодание, что иногда приводит к недостаточности в работе сердца и даже к инфаркту миокарда. Но при нормальном течении стрессорной реакции адреналин, быстро разрушаясь, успевает дать стимул дальнейшему развитию антистрессорной защиты.)
В гипоталамусе к этому времени происходят изменения в концентрации посредников - нейромедиаторов. Расход этих веществ во время стресса увеличился - они активизировали центры гипоталамуса, контролирующие выделение в кровь из гипофиза кортикотропин, гормона роста и пролактина. Эти гормоны обладают выраженной способностью мобилизовать жирные кислоты из жировых депо. Такое влияние энергетически необходимо, но использовать для этой цели в течение длительного времени адреналин нельзя: уж слишком сильную вегетативную бурю вызывает этот гормон. Если ситуация, вызвавшая стресс, не кратковременна, то необходим переход на более солидную энергетическую базу, что и обеспечивается вводом в действие жиромобилизующих гормонов гипофиза - кортикотропина, гормона роста, липотропина и пролактина. Из жировых запасов эти гормоны берут жирные кислоты, которые обеспечивают сердцу в 6 раз больше энергии, чем глюкоза.
Гипоталамические гормоны, вовлекая в обеспечение стрессорной реакции кортикотропин - гормон гипофиза, который ведает деятельностью коры надпочечников, усиливают антистрессорную защиту и другим образом. Эта эндокринная железа - кора надпочечников - всегда активизируется, когда необходима защита. Вначале гипоталамус чисто нервными импульсами активизирует мозговой слой надпочечников и вследствие этого выделяется адреналин. Затем кортикотропин стимулирует выделение из коры надпочечников группы защитных гормонов, главным из которых является кортизол. Кортизол обладает многими из тех свойств, какими наделен адреналин, но время действия кортизола значительно больше. Происходит как бы второе преобразование сигнала - сначала нервного в гормональный (выброс адреналина в ответ на активацию гипоталамуса), а затем острого гормонального ответа - в длительную эндокринную защитную реакцию.
В частности, кортизол (особенно в сочетании с гормоном роста) препятствует усвоению глюкозы в мышечной ткани. Это очень важно: мышцы великолепно съедают жирные кислоты, а для нервных клеток нужна глюкоза - главное топливо, которое усваивают нервные клетки. Более того, кортизол еще одним путем влияет на перераспределение "топлива", а именно активируя процесс превращения белка в глюкозу. Это очень важно, так как в процессе борьбы пища не поступает извне, а запасы в организме резервного сахара - гликогена - очень ограничены. (Отметим по ходу дела, что именно поэтому при выделении большого количества кортизола вследствие очень сильного эмоционального воздействия у человека может развиваться даже временный сахарный диабет из-за неспособности быстро усваивать вновь образуемый сахар. Так, при падении курса акций на бирже возникает "диабет биржевиков". Если у того или иного индивидуума имеются к тому же определенные предпосылки, то длительный стресс может привести и к стойкому сахарному диабету.)
Здесь нельзя вновь не отметить одно очень важное обстоятельство. Белки являются структурными и функциональными элементами клеток. Поэтому перевод клеточных белков в сахар очень невыгоден для организма. Следовательно, если уж приходится сложные белки с их многочисленными свойствами сжигать как простое топливо, то лучше брать эти белки из таких тканей, которые быстро обновляются в организме и которые, главное, не несут определенной структурной функции, так что временное уменьшение массы этой ткани окажется не столь повреждающим. Такой тканью являются лимфоциты, рассредоточенные в лимфатических железах и в других лимфоидных тканях - селезенке, костном мозге и, наконец, тимусе, как это недавно выяснилось, - главном органе клеточного иммунитета.
Многие знают, что после сильного и длительного волнения легко заболеть простудным - вирусным заболеванием. Казалось бы, что общего между волнением и склонностью к инфекции? Эта взаимосвязь порождена использованием лимфоцитов для обеспечения энергетических потребностей организма в период стресса (гл. 11).
Но в разгар стресса все эти возможные последствия в расчет не принимаются. Напротив, обеспечение энергией - главное. Тканям должно быть быстро доставлено дополнительное питание, и гипоталамус посылает импульсы к двигательным нервам сердца и сосудов. Еще более суживается просвет сосудов внутренних органов, усиливается деятельность сердца, повышается давление крови в системе и в результате ускоряется ток крови.
(Вот почему длительные отрицательные эмоции особенно опасны для гипертоника, далеко не безразличны они и для здоровых людей, поскольку способствуют возникновению гипертонической болезни*. Одновременно адреналин, гормон роста, жирные кислоты, холестерин, кортизол и т. д.- все те факторы, которые последовательно вовлекались в обеспечение стрессорной реакции, повышают свертываемость крови и тем самым помогают избежать тяжелых кровотечений, возникающих при ранении. (Но этот же защитный механизм может явиться причиной возникновения тромбоза сосудов и инфаркта сердца у человека под влиянием эмоционального возбуждения.)
В процессе борьбы все, что мешает ей, должно быть заторможено. Поэтому гормон коры надпочечников - кортизол в этот острый момент не только служит обеспечению энергией, способствуя, в частности, синтезу углеводов из белка, не только подавляет реакции клеточного иммунитета, но обладает еще свойством подавлять воспаление, тем самым уменьшая величину повреждения тканей при травме. (Именно поэтому в современной медицине кортизол и его производные - кортизон, преднизолон и др. - нашли такое удачное применение при различных типах воспалительных процессов - от воспаления радужной оболочки глаза (ирита) до язвенного колита, ревматизма, болезней суставов и миокардита.)
Но если повреждение тканей все же велико, то часть белков из травмированной ткани, попадая в общий кровоток, достигает иммунной системы и, действуя на нее подобно "чужим" белкам, то есть подобно микробам, производит иммунизацию против собственных тканей. В этом случае носители иммунитета - антитела, проникая в ткани, могут вызвать их повреждение. Это грозит животному болезнями или даже гибелью через некоторое время после окончания борьбы от аутоиммунных заболеваний, развивающихся по тем же законам, по которым несовместимость тканей становится преградой при пересадке "чужих" органов от человека к человеку. Поэтому то обстоятельство, что кортизол, обеспечивал организм энергией за счет разрушения лимфоцитов, приводит в процессе стресса к снижению иммунитета, ослабляет опасность иммунизации против собственных тканей. (Соответственно в современной медицине кортизол вследствие своей способности подавлять иммунитет нашел широкое применение при лечении аллергических состояний, например бронхиальной астмы).
Кортизол и регулятор его продукции гипофизный гормон - кортикотропин, а также пролактин обладают способностью тормозить активность "полового центра" гипоталамуса. Это биологически целесообразно: пока борьба не закончена, ее результаты неизвестны, а раненое животное не должно приносить потомства. (Так, у женщин длительные отрицательные эмоции нередко приводят к прекращению менструального цикла, а у мужчин снижается сексуальная потенция.)
Стресс, устраняя все лишнее, подавляет и аппетит. Гипоталамический центр аппетита тормозится во время эмоционального возбуждения, так же как и деятельность пищеварительной системы. Это целесообразно во имя борьбы. (Одно из таких знакомых всем проявлений - пересыхание слизистой во рту и в горле при волнении.)
Но вот борьба с ее большим расходом энергии закончена. Начинается фаза восстановления.
Гипоталамус через находящийся в нем центр терморегуляции усиливает теплоотдачу. Расширяются кожные сосуды, увеличивается потоотделение, а у собаки, которая не имеет потовых желез, развивается одышка и язык почти вываливается из пасти, увеличивая испарение. Все это охраняет организм от чрезмерного перегревания, возможного вследствие интенсивного сгорания жирных кислот и глюкозы в ходе борьбы.
Избыток жирных кислот, интенсивная мобилизация которых была столь необходима в энергетическом отношении, служит в период восстановления сырьем для синтеза холестерина. Это обстоятельство имеет очень важное значение, так как в послестрессовый период необходим "ремонт" поврежденных тканей за счет деления клеток. В то же время каждой новой клетке нужна оболочка - мембрана, каркас которой содержит много холестерина. Так, сдвиг обмена при стрессе в сторону усиленного использования жирных кислот - это не только обеспечение энергетических потребностей, но и способ сбережения и восстановления запасов глюкозы. Этот сдвиг обеспечивает и подавление иммунитета, и усиление свертываемости крови, и, наконец, повышение продукции холестерина - важной структурной части клетки, без которой нарушается процесс клеточного деления.
Все эти изменения происходят при каждом эмоциональном стрессе.
Например, у студентов во время экзаменационной сессии тоже увеличивается содержание холестерина в крови - одного из главных факторов развития атеросклероза. Но ведь жизнь заставляет держать экзамены отнюдь не только в стенах института. Так, частые или длительные волнения, создавая ложную ситуацию защиты, формируют типичную болезнь старения - атеросклероз.
Но все отрицательные следствия стресса как бы в будущем, а сейчас, в фазу непосредственного восстановления, все, что описывалось выше, полезно. Особый антидиуретический гормон прямо из гипоталамуса поступает в гипофиз и оттуда в кровь, задерживая выделение воды почками и тем помогая восстановлению потерянной крови. Усиливается ранее заторможенная гипоталамусом функция щитовидной железы, гормоны которой необходимы для восстановления поврежденных тканей. Это происходит потому, что гипоталамический центр, регулирующий работу щитовидной железы, в начале борьбы тормозит ее деятельность, а когда начинается период восстановления - стимулирует. Затухает выделение кортизола, и это способствует восстановлению синтеза белка, чему ранее кортизол препятствовал, превращая белок в сахар.
Так последовательно, этап за этапом регулируется через гипоталамус механизм защиты, а затем - и восстановления потерь, если повреждение, пришедшее из внешней среды, совместимо с жизнью.
Мы рассмотрели, как стрессорная реакция обеспечивает защиту организма в жизненно опасный для него момент. Но вспомним, каким образом осуществлялся механизм защиты от стресса. Происходило повышение в крови многих гормонов: адреналина, гормона роста, пролактина, кортикотропина, кортизола; увеличивалась концентрация в крови веществ, сгорание которых дает организму энергию, жирных кислот и глюкозы; происходило накопление холестерина, усиливалась свертываемость крови, увеличивалось артериальное давление и т. д. Все это означает отклонение от закона постоянства внутренней среды, от закона, соблюдение которого, как и защита, необходимо ради жизни.
Однако мы знаем, что в силу кибернетического механизма регуляции гомеостатические системы стремятся к равновесию или к восстановлению стабильности и порядка. Поэтому вполне резонен вопрос: как же может в течение всей стрессорной ситуации, пока происходит "встреча кошки с собакой", существовать нарушение внутренней среды организма?
Действительно, если повышается концентрация в крови рабочего гормона, например кортизола, то он, в соответствии с механизмом отрицательной обратной связи, должен затормозить выделение своего регулятора, в данном случае гипофизарного гормона кортикотропина, и выделение кортизола, не стимулируемое кортикотропином, должно снизиться до нормы - до пределов, охраняемых законом постоянства. Но ведь этого не происходит, и уровень кортизола в крови в период стресса остается повышенным, создавая тем самым механизм антистрессорной защиты. В чем здесь дело?
Для каждого гормона-регулятора существует свой рабочий фактор, который при повышении концентрации в крови вызывает подавление активности регулятора. Выделение кортикотропина должно быть заторможено повышенным уровнем кортизола; гормона роста и пролактина - повышенным уровнем в крови сахара и жирных кислот. И все же одновременно в крови при стрессе определяется высокая концентрация как гормонов-регуляторов, так и рабочих гормонов и энергетических субстратов.
Уже упоминалось, что Ганс Селье, говоря о повышении активности гипофиза, а затем и гипоталамуса при стрессе, не обратил внимания на то обстоятельство, что повышение активности гипоталамо-гипофизарного комплекса не может существовать сколько-нибудь длительно, если не произойдет повышение порога чувствительности гипоталамуса к тормозящему действию периферических сигналов. Иными словами, если не включится механизм, обеспечивающий выполнение закона отклонения гомеостаза.
Физиологическое значение механизма повышения гипоталамического порога очень велико. При его отсутствии стрессорная приспособительная реакция была бы всегда кратковременной, она длилась бы столько, сколько необходимо для того, чтобы сработал механизм отрицательной обратной связи и система пришла бы в равновесие. Этого, как мы знаем, не происходит. Значит, при стрессе действительно имеет место повышение гипоталамического порога. А именно это явление - повышение гипоталамического порога, как мы выяснили в главе 4, определяет регуляторный механизм развития, старения и регуляторный тип естественной смерти.
Этим можно объяснить многое во взаимоотношениях между стрессом и болезнями. Стресс вызывает обменные сдвиги, сходные с теми, которые наблюдаются при старении. Концентрация в крови сахара, жирных кислот, холестерина возрастает. Это означает, что произошло повышение гипоталамического порога в системе энергетического гомеостата; высокий уровень гормона коры надпочечников при стрессе показывает, что повышение гипоталамического порога происходит и в адаптационном гомеостате. Это соответствует тому, что наблюдается и у горбуши в период нереста, то есть опять-таки при явлении, сцепленном с механизмом развития и смерти.
Иными словами, то, что высшие организмы наделены самой высокой способностью защиты от стрессоров, обусловлено появлением в процессе эволюции живой природы сложных гомеостатических систем, венцом которых являются гипоталамические системы. Создать необходимые отклонения для организации защиты возможно только за счет повышения гипоталамического порога - за счет того же механизма, который лежит в основе механизма развития, старения и болезней старения. Тем самым, защищаясь от внешних причин смерти, организм не только делает это ценой болезней адаптации, но и ускоряет естественный процесс старения. Вот таким образом невзгоды и печали уменьшают дни жизни.
Остается еще добавить, что само повышение гипоталамического порога при стрессе вызывается следующим образом. Когда кошка и собака заметили друг друга, сигналы, оценивающие это событие, из центральной нервной системы устремляясь в лимбическую систему и в гипоталамус, активизируют его деятельность. Но любая деятельность в системе нервных клеток связана с расходованием посредников - медиаторов нервного импульса. Вся вегетативная система подразделена на два взаимно уравновешивающихся, антагонистических отдела - симпатическую и парасимпатическую нервную систему. В соответствии с этим имеются две группы медиаторов-посредников. Их условно можно назвать С медиаторы - для симпатических импульсов и П-медиаторы - для парасимпатических.
К группе С-медиаторов относятся дофамин и норад-реналин - вещества, структурно очень близкие к стрессорному гормону тревоги - адреналину; группа П-медиа-торов включает серотонин и близкие к нему соединения (индоламины). С- и П-медиаторы синтезируются из аминокислот, соответственно тирозина и триптофана. Снижение концентрации в гипоталамусе С- и П-медиаторов при стрессе вследствие их повышенного расхода и вызывает повышение гипоталамического порога. Кстати, если такое снижение слишком выражено, что может произойти при длительном стрессе, то возникает психическая депрессия.
Многие знают, как после чрезмерного эмоционального возбуждения на какой-то период может прийти апатия. Это признак истощения запасов нейромедиаторов, предупреждение, что необходим покой для периода восстановления. Действительно, с той или иной скоростью, в значительной степени зависящей от врожденной силы нервной системы, то есть от ее генетических особенностей, а также и от особенностей обмена веществ, происходит и нормализация содержания в гипоталамусе медиаторов. Это означает, что восстанавливается гипоталамический порог чувствительности и система саморегуляции вновь начинает работать правильно, обеспечивая постоянство внутренней среды организма. Буря, пронесшаяся вместе со стрессом, затихает: прошлое забыто или почти забыто, если во время стресса не произошло серьезных нарушений в деятельности организма.
В этом умиротворении после бури отличие стресса от всего того, что связано с процессом старения.
Поэтому рассмотрим в следующих трех главах, каким образом возрастные изменения в деятельности трех основных гомеостатических систем - адаптационной, репродуктивной и энергетической - приводят к возникновению трех нормальных болезней - гиперадаптоза, климакса и ожирения, то есть болезней, которые с той или иной скоростью развиваются всегда в результате закономерного отклонения гомеостаза, связанного с осуществлением программы развития организма.
Старея, человек начинает жить как бы в состоянии хронического стресса, и поэтому становится все более и более беззащитным, когда действительный стресс предъявляет свои требования к организму. Время - универсальный стрессор.
Серый
участник
 
Сообщения: 4
Зарегистрирован: Вс ноя 19, 2006 08:40

Re: Правдивая теория старения! без заблуждений

Сообщение evgenevgen » Вт дек 04, 2007 09:10

Серый писал(а):Стало быть, от мощности симпатико-адреналовой системы зависит качество и продолжительность жизни.

Так нашли все-таки, как в любой момент настроить симпатико-адреналовую систему на нужную мощность ? (при всем уважении к исследователям, не люблю, к сожалению, медицинские книги читать :oops:).
З.Ы. Не считаю, что
основные болезни человека связаны прежде всего с неблагоприятным влиянием ряда внешних факторов
, если конечно над собой работать.
evgenevgen
старожил
 
Сообщения: 180
Зарегистрирован: Чт фев 15, 2007 12:18
Откуда: Вологда

Сообщение age » Вт дек 04, 2007 12:58

В.М. Дильман. Большие биологические часы (введение в интегральную медицину)
http://www.lib.ru/NTL/MED/STARENIE/startenie.txt
age
участник
 
Сообщения: 73
Зарегистрирован: Пн окт 09, 2006 11:24
Откуда: Lithuania

Re: Правдивая теория старения! без заблуждений

Сообщение Серый » Пн дек 31, 2007 16:56

Всем доброго здоровья!
Поздравляю всех с наступающим новым годом!

Буланов Ю.Б., врач

Все высшие формы поведения человека связаны с нормальной жизнедеятельностью катехоламинергических клеток - нервных клеток, синтезирующих катехоламины и использующих их в качестве медиатора. От активности синтеза и выделения катехоламинов зависят такие сложные процессы, как запоминание и воспроизведение информации, сексуальное поведение, агрессивность и поисковая реакция, уровень настроения и активность в жизненной борьбе, скорость мышления, эмоциональность, уровень общего энергетического потенциала и т.д.
Чем активнее идет синтез и выделение катехоламинов в количественном отношении, тем выше настроение, общий уровень активности, сексуальность, скорость мышления, да и просто работоспособность.
Самый высокий уровень катехоламинов (на единицу массы тела) у детей. Дети отличаются от взрослых прежде всего очень высокой эмоциональностью и подвижностью, способность к быстрому переключению мышления с одного объекта на другой. У детей исключительно хорошая память, всегда хорошее настроение, высокая обучаемость и колоссальная работоспособность.
С возрастом синтез катехоламинов как в центральной нервной системе, так и на периферии замедляется. Тому есть разные причины: это и старение клеточных мембран, и исчерпание генетических резервов, и общее снижение синтеза белка в организме. В результате снижения скорость мыслительных процессов, уменьшается эмоциональность, снижается настроение. С возрастом все эти явления усугубляются: снижается эмоциональность, настроение, нередки случаи депрессии. Причина этого в одном - в возрастном снижении синтеза катехоламинов в организме.
Почему работоспособность напрямую зависит от количества в нервных клетках катехоламинов? Катехоламины оказывают мобилизующее действие на энергетические резервы нервных клеток. Они активизируют окислительно-восстановительные процессы в организме, «запускают» сгорание источников энергии - в первую очередь углеводов, затем жиров и аминокислот.
Катехоламины повышают чувствительность клеточных мембран к половым гормонам и соматотропину. Не обладая собственно анаболическим действием, они усиливают белковый синтез за счет повышения чувствительности клеток к анаболическим факторам. Катехоламины прямо или косвенно повышают активность самих эндокринных желез, стимулируют гипоталамус и гипофиз. При любой напряженной работе, особенно физической, содержание в крови катехоламинов увеличивается. Это приспособительная реакция организма к нагрузке любого рода. И чем более выражена реакция, тем лучше организм приспосабливается, тем быстрее достигается состояние тренированности. При интенсивной физической работе учащение сердцебиения, повышение температуры тела (субъективно ощущается как жар в теле и испарина) - все это вызвано не чем иным, как выделением в кровь большого количества катехоламинов.
Основные виды катехоламинов в организме представлены тремя соединениями:
1. Адреналин;
2. Норадреналин;
3. Дофамин.
Адреналин, вещество, вырабатываемое надпочечниками. Его часто называют, «гормоном страха» из-за того, что при испуге сердце часто начинает биться ввиду сильного выброса в кровь адреналина. Это, однако, не совсем так. Выброс адреналина происходит при любом сильном волнении или большой физической нагрузке. Адреналин повышает проницаемость клеточных мембран для глюкозы, усиливает распад гликогена и жиров. Если человек испуган или взволнован, то его выносливость резко повышается. Адреналин - активный допинг человеческого организма. Чем больше в надпочечниках резервы адреналина, тем выше физическая и умственная работоспособность.
В отличие от адреналина, норадреналин называют гормоном ярости, т.к. в результате выброса в кровь норадреналина всегда возникает реакция агрессии. От адреналина лицо человека бледнеет, от норадреналина краснеет. Гай Юлий Цезарь отбирал в свое войско только тех воинов, лицо которых краснело в бою. Это говорило о повышенной агрессивности таких солдат. Если адреналин повышает, в основном, выносливость, то норадреналин значительно увеличивает мышечную силу.
Высокое содержание в нервной системе дофамина усиливает все сексуальные рефлексы и повышает чувствительность клеток к половым гормонам, что способствует высокому анаболизму. Самым высоким содержанием дофамина в ЦНС отличаются подростки. Их настроение носит на себе налет эйфории, а поведение отличается выраженной гиперсексуальностью. Любые тренировки, даже неправильные с методической точки зрения, в подростковом возрасте дают хороший анаболический эффект. Возрастное падение содержания дофамина вызывает возрастную депрессию (снижение настроения), падение сексуальной активности (у мужчин) и замедление скорости анаболических реакций.
Катехоламины реализуют энергетический потенциал организма. Если энергетические резервы организма истощены, то выброс катехоламинов приводит к еще большему истощению и даже к гибели.
Реализация энергетического потенциала организма происходит в первую очередь за счет распада гликогеновых депо печени и во вторую очередь за счет гликогена мышц. Распад гликогена в мышцах приводит к значительному увеличению мышечной силы, а мобилизация гликогенного фонда печени увеличивает краткосрочную выносливость. Дальнейший выброс катехоламинов усиливает выброс в кровь жирных кислот из подкожно-жировых депо, а жирные кислоты являются практическим «неисчерпаемым» источником энергии в организме.
Катехоламины увеличивают нервно-мышечную проводимость, повышают быстроту реакции и скорость мышления.
Даже поверхностное знакомство с обменом катехоламинов в организме помогает нам сделать вывод, что катехоламины являются ключевым звеном как в умственной, так и в физической работоспособности, как в скорости, так и в качестве мышления. Творческие способности, способность к абстрактному и художественному мышлению, к анализу и синтезу напрямую зависит от катехоламинового обмена.
Анализируя жизнь великих людей: политиков, ученых, музыкантов, художников и т.д., можно отметить удивительные особенности. Например, такое заболевание, как подагра, у них встречается почти в 200 раз чаще, чем среди обычных. Основной механизм подагры - это накопление в крови мочевой кислоты. Мочевая кислота обладает способностью стимулировать катехоламиновые рецепторы, повышая чувствительность клеток к катехоламинам. Подагрики поэтому обладают живостью характера и высокой подвижностью мышления.
Стимулирующее действие таких напитков, как чай и кофе, очень похоже на стимулирующее действие мочевой кислоты, т.к. эти напитки воздействуют на те же самые рецепторы, что и мочевая кислота. Алкалоиды чая и кофе «запускают» синтез особого фермента - аденилатциклазы. Аденилатциклаза приводит к накоплению в клетках ц-АМФ (циклического аденозинмонофосфата). Он изменяет механизм клетки, повышая ее чувствительность к катехоламинам. Беда лишь в том, что регулярный прием чая и кофе истощает резервы ц-АМФ в клетке и в конечном итоге истощает нервную систему. По этой причине рекомендовать чай и кофе в качестве спортивных стимуляторов нельзя. Среди людей с выдающимися способностями в десятки раз чаще, чем среди обычных, встречаются люди с повышенной функцией щитовидной железы. И это тоже неудивительно, ведь гормоны щитовидной железы резко симулируют синтез катехоламинов в организме и повышают чувствительность к ним клеток. Почти все величие люди обладают таким качеством, как гиперсексуальность. На это историки особенно часто обращают внимание. Половые гормоны способны замещать рецепторы катехоламинов и тем самым оказывать активизирующее воздействие на ЦНС.
Как видим, все в конечном итоге замыкается на катехоламинах: и подагра, и повышенная функция щитовидной железы и повышенная активность половых желез. У такого признанного гения, как Александр Сергеевич Пушкин, имело место сочетание всех трех вышеупомянутых факторов. Он страдал наследственной подагрой, с которой боролся ежедневными холодными ваннами со льдом. Из-за повышенной функции щитовидной железы он обладал чрезвычайно большой физической и интеллектуальной активностью и никогда не спал более 5-6 часов в сутки. Что же касается любовных похождений Александра Сергеевича, то они все известны и в комментариях не нуждаются.
Физическую активность катехоламины стимулируют в той же степени, как и интеллектуальную. Тот же А.С.Пушкин был прекрасным спортсменом: много плавал, фехтовал, занимался боксом и т.д.
Не только мочевая кислота, тиреоидные гормоны и половые железы активизируют синтез катехоламинов. Существует много заболеваний, да и просто наследственных факторов, в результате которых катехоламины продуцируются в повышенных количествах, но все эти факторы встречаются относительно редко.
Современная фармакология достигла очень многого, с ее помощью мы можем вмешиваться как в синтез отдельных катехоламинов, так и в активность всей симпатико-адреналовой системы1 в целом. Повышая активность катехоламиновых систем, мы можем добиваться такого повышения спортивной работоспособности, о котором раньше можно было только мечтать.
Почти все известные в настоящее время катехоламины причислены к допингам. Допингами считаются не только такие вещества, как адреналин, парадреналин и дофамин. К допингам причислены почти все симпатомиметические вещества2. Самые известные симпатомиметики - это амфетамины. Амфетамины значительно повышают выносливость и используются особенно широко в тех видах спорта, где необходимы как выносливость, так и быстрота реакции (например, в боксе).
Очень популярным допингом является также эфедрин - растительный алкалоид, получаемый эфедрой хвощевой. Эфедрин исключительно популярен среди культуристов, т.к. он очень хорошо сжигает жировую ткань, но при этом «не трогает» мышечную. Симпатомиметики вообще отличаются тем, что не обладая собственно анаболическим действием, они увеличивают посттренировочный выброс в кровь соматотропина и андрогенов, т.е. потенцируют физиологический эффект тренировки на организм.
Не подлежит сомнению, что любой симпатомиметик в больших сверхвысоких дозировках может быть вреден и способен вызвать истощение нервной системы.
Проблемы симпатомиметиков вообще не так проста, как кажется. Запретить их применение в спорте попросту невозможно хотя бы уже потому, что многие препараты держатся в крови всего несколько десятков минут, а уже вызванные ими физиологические эффекты длятся часами.
Некоторые катехоламины, как это ни странно может показаться, на первый взгляд в малых дозах обладают анаболическим эффектом, способствуя наращиванию мышечной массы и силы.
Классическим катехоламином считается адреналин. В последнее время появился ряд научных работ, в которых доказано анаболическое и общеоздоровительное действие малых доз адреналина (1/10-1/20 от до, вызывающих стимуляцию). Если большие дозы адреналина (от 1 мл и выше) вызывают сердцебиение, подъем сахара в крови, повышение артериального давления и распад гликогена в гликогеновых депо, то можно дозы его действуют прямо противоположно. Замедляется пульс, снижается артериальное давление, падает сахар в крови и при длительном курсовом применении развивается отчетливый анаболический эффект. Естественно, что применение таких малых доз не дает никакого стимулирующего эффекта и ни о каком допинговом воздействии не может быть и речи.
Симпатомиметики бывают разные. У некоторых из них даже в относительно больших дозах стимулирующий эффект выражен слабо, а анаболическое действие достаточно сильно. В последние годы широкое распространение в спорте получил такой препарат, как кленбутерол. Это синтетический катехоламин, не имеющий аналогов в природе. Используется этот препарат для лечения бронхиальной астмы, а также при некоторых видах одышки, как легочного, так и сердечного происхождения. Как только кленбутерол вошел в медицинскую практику, его сразу же стали широко использовать в спорте и выяснилось, что помимо стимулирующего действия он обладает выраженным анаболическим эффектом, сравнимый с эффектом анаболических стероидов. Кленбутерол, к тому же, не вызывает выраженного сердцебиения, возбуждения ЦНС и подъема артериального давления подобно другим синтетическим катехоламинам.
Действие кленбутерола весьма своеобразно. Подобно малым дозам адреналина, небольшие дозы кленбутерола оказывают отчетливый общеукрепляющий и анаболический эффект. При этом проявляется отчетливое противовоспалительное и противоаллергическое действие препарата. Подобно некоторым другим катехоламинам кленбутерол улучшает половую функцию у мужчин и несколько повышает настроение. Тем не менее необходимо отметить, что медицинская комиссия МОК отнесла кленбутерол к допингам.
Как мы уже знаем, с возрастом содержание катехоламинов в ЦНС снижается как в силу генетических причин, так и в силу истощения запасов (депо) катехоламинов в нервных клетках. Каждая нервная клетка из катехоламинергических структур имеет определенный запас (депо) катехоламинов.
Во время сильных стрессов (в том числе и при больших физических нагрузках) происходит массированный выброс катехоламинов из депо. Иногда такой выброс достигает таких степеней, что депо катехоламинов истощается и нервная клетка сама уже не может восполнить их дефицит. Нет ничего хуже истощения запасов катехоламинов в ЦНС. Раньше в медицине бытовал такой термин, как «истощение нервной системы». Сейчас такое истощение называют «истощением симпатико-адреналовой системы» и подразумевается здесь истощение катехоламиновых депо в нервных клетках. Организм при таком истощении угасает буквально на глазах.
На человека обрушиваются все мыслимые и немыслимые болезни. Он быстро стареет. Такое быстрое угасание связано с тем, что в организме многое зависит от регуляторной роли катехоламинов. Даже самообновление клеточных мембран (субклеточный молекулярный уровень!) невозможно без достаточного содержания в организме катехоламинов. Под контролем адреналина и некоторых других веществ фосфолипидные молекулы постоянно «входят» и «выходят» из клеточных мембран, осуществляя их «текущий ремонт». От интенсивности и полноценности такого текущего ремонта зависит стабильность клеточных мембран и жизнеспособность клетки, ее устойчивость ко всем внешним (да и внутренним тоже) повреждающим факторам.

Выводы :

1.Сильные стрессы (в том числе и чрезмерные физические нагрузки) снижают содержание катехоламинов в ЦНС. Чтобы резервы катехоламинов ЦНС не истощились, необходимо правильно тренироваться (не перетренировываться1) и правильно восстанавливаться после нагрузок. Любые соревнования характеризуются максимальной мобилизацией катехоламиновых резервов и их истощением. Поэтому очень важно уметь это истощение предотвращать, восстановить потраченные резервы, иначе рано или поздно они истощатся окончательно, и тогда из спорта придется уходить.
2. Восстановление резервов ЦНС без рациональной лекарственной терапии невозможно. Отрицать это - значит лицемерить. Более того, современные тренировочные нагрузки большого спорта столь велики, что сами по себе являются серьезным истощающим фактором. Восстановительное лечение может потребовался не только в межсоревновательных периодах, но даже и в межтренировочных.

Есть несколько способов восстановления резервов катехоламинов в нервных клетках:
1. Введение малых доз катехоламинов;
2. Введение в организм предшественников катехоламинов;
3. Препараты, усиливающие синтез катехоламинов в ЦНС;
4. Ноотропные средства;
5. Адаптогены;
1) Физиологические стимуляторы.
Введение малых доз катехоламинов
Введение малых доз катехоламинов (строго под наблюдением врача) способно восстановить истощенные резервы катехоламинов ЦНС и повысить работоспособность как общую, так и спортивную.
Логично было бы предположить, что введение катехоламинов в организм вызовет ответную реакцию - уменьшение синтеза катехоламинов самим организмом. Это называется реакцией по типу отрицательной обратной связи. Так оно и происходит, но только в том случае, если вводить катехоламины в больших дозах. Если использовать малые дозировки, то возникает ситуация прямо противоположная: реакция по типу положительной обратной связи. В ответ организм начинает вырабатывать собственные катехоламины в повышенных количествах.
На сегодняшний день наиболее детально разработана методика введения в организм малых доз адреналина. Адреналин вводится 1 раз в день подкожно в дозах от 1/10 до 1/20 от среднетерапевтических. Подкожное введение адреналина позволяет добиться вполне ощутимого анаболического эффекта и, что немаловажно, снижает риск возникновения простудных заболеваний.
2) Введение в организм предшественников катехоламинов
Все катехоламины синтезируются в организме из аминокислоты - фенилаланина. В общем виде цепочку синтеза катехоламинов можно представить следующим образом: фенилаланин —› L1-ДОФА1 —› дофамин —› норадреналин —› адреналин.
Наиболее физиологичным является введение в организм аминокислоты фенилаланина в больших количествах, порядка нескольких граммов. Это мягко активизирует всю симпатико-адреналовую систему, увеличивая содержание в организме всех катехоламинов. Такие методики уже существуют, но они пока еще находятся на стадии экспериментальной проверки. Лечение большими дозами фенилаланина проходит сейчас апробацию в ряде ведущих клиник США как средство для борьбы с нервной депрессией.
На сегодняшний день наиболее детально разработана методика введения в организм такого предшественника катехоламинов, как L1- ДОФА. L1- ДОФА принимается внутрь в таблетках 1 раз в день по 0,5 г. Лечение L1- ДОФА применяется в ряде московских клиник как средство восстановления истощенной нервной системы. L1-ДОФА повышает посттренировочный выброс в кровь соматотропного гормона и с этой целью достаточно широко применяется в США.
3) Препараты, усиливающие синтез катехоламинов в ЦНС
Существует большой класс фармакологических соединений, т.н. антидепрессанты, которые используются для лечения нервных депрессий - расстройств, связанных с пониженным настроением. В спортивной практике применение антидепрессантов не распространено, т.к. собственно стимулирующим действием они не обладают. Антидепрессанты, однако, используются в тех случаях, когда нужно реабилитировать спортсмена, восстановить его после сильного истощения симпатико-адреналовой системы. Обычно это бывает после трудных и ответственных соревнований.
4) Ноотропные средства1.
К ноотропным средствам относится целая группа препаратов, которая используется для улучшения умственных способностей. Отличительной особенностью ноотропов является то, что они нетоксичны, способны повышать как умственную, так и физическую работоспособность. Механизм действия ноотропов основан на их способности повышать энергетический потенциал нервных клеток. Самым слабым звеном в нервной клетке являются митохондрии - внутриклеточные образования, вырабатывающие для клетки энергию. В эволюционном плане это самые молодые образования, поэтому они чрезвычайно уязвимы и страдают от любого вредного воздействия в первую очередь. Но они также откликаются в первую очередь и на любое положительное воздействие. Энергетическое обеспечение - ключевое звено любого обмена.
На синтез катехоламинов как таковой ноотропы не влияют, однако их общее энергетизирующее действие так укрепляет нервные клетки, что увеличивается синтез всех нейромедиаторов, и катехоламинов в том числе.
Наиболее широко распространены в спортивной практике такие ноотропы, как пирацетам (ноотропил), оксибутират натрия (ГОМК), пикамилон, пиридитол (энцефабол). Помимо всего прочего, эти препараты обладают еще и определенным анаболическим действием, за исключением пиридитола. Пиридитол, однако, отличается от других ноотропных препаратов тем, что способен стимулировать непосредственно синтез катехоламинов в нервных клетках.
Применять строго под наблюдением врача.5) Адаптогены
Это целая группа растений, нетоксична для организма, которые широко применяются как в медицине, так и в спорте для стимуляции работоспособности. К адаптогенам относятся такие растения, как женьшень, элеутерококк колючий, лимонник китайский, аралия маньчжурская, радиола розовая, заманиха высокая, стеркулия платанолистная, левзея сафлоровидная. Заслуживает внимания то, что тонизирующее действие адаптогенов достигается за счет повышения чувствительности нервных клеток к катехоламинам. Подобно кофеину, адаптогены воздействуют на аденилатциклазу клеточных мембран и способствуют накоплению внутриклеточного фонда ц-АМФ. Это и повышает чувствительность клеток к катехоламинам, ведь ц-АМФ - внутриклеточный посредник нейрамедиаторного сигнала. Однако, в отличие от кофеина, даже очень длительное введение адаптогенов не приводит к истощению внутриклеточного фонда ц-АМФ и поэтому их можно рекомендовать к длительному применению.
В некоторых странах, таких, например, как Япония, адаптогены употребляются всем населением наравне с пищевыми продуктами от младенческого возраста до самой смерти без каких-либо вредных последствий.
6) Физиологические стимуляторы
В некоторых случаях усиление синтеза катехоламинов в ЦНС удается добиться физиологическими стимуляторами. Их количество очень велико и одно лишь перечисление таких способов воздействия заняло бы много места. Рассмотрим лишь самый банальный из них - обливание холодной водой.
С самых давних времен обливание холодной водой используется как средство для укрепления нервной системы и даже как средство лечения многих заболеваний. Каков механизм его воздействия? Исключительно рефлекторный. Резкое воздействие холодом вызывает сильный выброс в кровь адреналина и других катехоламинов. В данном случае цель массивного выброса в кровь катехоламинов - сузить кожные сосуды, чтобы холод не проник вглубь тела, к внутренним органам. По мере развития тренированности, выброс катехоламинов в ответ на воздействие холодом становится все сильнее и сильнее, благодаря увеличению резервных возможностей нервной системы.
С возрастом происходит снижение активности катехоламинергических структур головного мозга, что негативно сказывается на эндокринном балансе организма. В ЦНС начинается преобладание активности тех нервных структур, где нейромедиатором служит ацетилхолин - вещество антагонистическое по отношению к катехоламинам.
Катехоламины и ацетилхолин находятся как бы на двух разных чашах одних весов. Преобладание катехоламиновых структур подавляет ацетилхолиновые и, наоборот, преобладание ацетилхолиновых подавляет катехоламиновые. Нервные клетки, где нейромедиатором служит ацетилхолин в эволюционном плане являются более древними, чем те, где медиаторами служат катехоламины, поэтому они более устойчивы по отношению к старению организма.
С возрастом активность ацетилхолиновых структур головного мозга начинает преобладать. Старение катехоламиновых нервных центров приводит к растормаживанию ацетилхолиновых. Человек становится более спокойным, уравновешенным, малоподвижным. Старческое дрожание рук - это результат преобладания активности ацетилхолиновых структур над катехоламиновыми. Мышление становится замедленным. Даже относительно простые дела, которые в молодом возрасте делались шутя, становятся очень трудоемкими.
Беда еще и в том, что ацетилхолин вызывает избыточную активность коры надпочечников. Это приводит к повышенному содержанию в крови глюкокортикоидных гормонов. Их избыток оказывает сильный отрицательный эффект и причины этого следующие:
1. Глюкокортикоидные гормоны обладают сильным катаболическим действием. Усиливается распад белка в мышечной ткани и мышечный рост даже в результате самых интенсивных тренировок становится невозможным. Снижение белково-синтетических процессов еще больше замедляет синтез катехоламинов и все начинается сначала. Возникает замкнутый «порочный круг».
2. Самообновление белковых структур наиболее быстро протекает в тканях желудочно-кишечного тракта, поэтому катаболическое действие глюкокортикоидов в первую очередь отражается на желудке и кишечнике. Чаще всего возникают язвы желудка и 12-и перстной кишки. Реже - язвенная болезнь кишечника. Зная этот механизм, уже нетрудно догадаться, каким образом истощение нервной системы приводит к развитию язвенной болезни. Язвенная болезнь, в свою очередь, нарушает процесс всасывания аминокислот в кишечнике и уменьшает анаболизм.
3. Распад белка под действием глюкокортикоидов приводит к повышенному содержанию в крови глюкозы, которая образуется из распавшихся аминокислот, что приводит к возникновению возрастного сахарного диабета (диабет II типа).
4. Повышение содержания сахара в крови вызывает ответную реакцию - усиление выделения в кровь инсулина. Инсулин снижает содержание в крови сахара, в результате чего он преобразуется в жировую ткань. Развивается возрастной тип ожирения.
5. Возрастное ожирение вызывает повышенное содержание в крови свободных жирных кислот. Жир распадается на жирные кислоты и глицерин, которые поступают в кровь и затем вновь возвращаются в подкожножировые депо. Таким образом осуществляется в организме постоянный кругооборот жирных кислот и глицерина. Чем больше количества жира под кожей, тем больше в крови жирных кислот, их количество в крови прямо пропорционально количеству нейтрального жира в подкожном депо. Возрастное нарастание количества жирных кислот в крови блокирует Т-лимфоциты крови, вызывая нейтрализацию клеточного иммунитета, что приводит к развитию злокачественных опухолей.
Даже поверхностный взгляд на формирование возрастной патологии подводит нас к мысли о том, что ее можно и нужно лечить с помощью всего арсенала средств, повышающих содержание катехоламинов в ЦНС. Выбор таких средств в настощее время довольно широк. Применяя их, мы можем не только повысить общую и спортивную работоспособность, не только увеличить творческий потенциал человека, но и активно препятствовать развитию возрастных изменений , задерживать старение организма, продлять творческое долголетие.


1 Симпатико-адреналовая система - это система нейронов (нервных клеток), продуцирующих катехоламины, которых в настоящее время насчитываются десятки.
2 Симпатомиметиеские вещества (симпатомиметики) - соединения, способные стимулировать нервные клетки, вырабатывающие катехоламины.
1 Перетренированность как таковая - это и есть снижение содержания катехоламинов в ЦНС. Перетренированность - это самое настоящее заболевание, истощение ЦНС.
1 L1 - L1- диоксифенилаланин.
1 «Hooe» - мышление.
Серый
участник
 
Сообщения: 4
Зарегистрирован: Вс ноя 19, 2006 08:40


Вернуться в Медицина

Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 1

cron